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We investigate three-dimensional magnetohydrodynamics turbulence in the presence of velocity and mag-
netic shear �i.e., with both a large-scale shear flow and a nonuniform magnetic field�. By assuming a turbulence
driven by an external forcing with both helical and nonhelical spectra, we investigate the combined effect of
these two shears on turbulence intensity and turbulent transport represented by turbulent diffusivities �turbulent
viscosity, � and � effect� in Reynolds-averaged equations. We show that turbulent transport �turbulent viscosity
and diffusivity� is quenched by a strong flow shear and a strong magnetic field. For a weak flow shear, we
further show that the magnetic shear increases the turbulence intensity while decreasing the turbulent transport.
In the presence of a strong flow shear, the effect of the magnetic shear is found to oppose the effect of flow
shear �which reduces turbulence due to shear stabilization� by enhancing turbulence and transport, thereby
weakening the strong quenching by flow shear stabilization. In the case of a strong magnetic field �compared
to flow shear�, magnetic shear increases turbulence intensity and quenches turbulent transport.
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I. INTRODUCTION

Most geophysical and astrophysical bodies are composed
of electrically conducting fluids �liquid iron for the Earth and
plasma for stars, interstellar medium, etc.�. The evolution of
magnetic field B and velocity U in these systems are often
described by a simplified model given by the incompressible
magnetohydrodynamics �MHD� equations �1�

�tU + U · �U = − �P + B · �B + ��U + f , �1�

�tB + U · �B = B · �U + ��B , �2�

� · U = � · B = 0, �3�

where B is the Alfvén velocity �B=M /��� where M is the
magnetic field measured in tesla; therefore B has the dimen-
sion of velocity�, p is the total �hydrodynamical+magnetic�
pressure, and � and � are the molecular viscosity and diffu-
sivity, respectively. Equation �1� is the Navier-Stokes equa-
tion including the Lorentz force which describes the effect of
the magnetic field on the velocity field and an external forc-
ing f, which is assumed to be at small scales. Equation �2�
describing the evolution of the magnetic field is called the
induction equation and can be derived from Maxwell’s equa-
tions and Ohm’s law.

In most astrophysical objects, velocity and magnetic fields
are observed to exist on a broad range of length and time
scales. In order to characterize the evolution of fields on
these scales, theories, such as mean-field dynamo �1,2�, de-
compose the fields into a mean and fluctuating parts and
parametrize the effect of the small-scale �unresolved� fields
on the large-scale fields in terms of transport coefficients.
Specifically, expressing B= �B�+b and U= �U�+u, where the
� • � stands for an average on the realization of the small-scale
fields, substituting this decomposition into Eqs. �1�–�3� and
averaging yield the following mean-field equations:

�t�U� + �U� · ��U� = − ��p� + �B� · ��B� + ��2�U� − � · S ,

�4�

�t�B� + �U� · ��B� = �B� · ��U� + ��2�B� + � 	 E , �5�

� · �U� = � · �B� = 0. �6�

The main challenge is to express the stress tensor S
= �u � u�− �b � b� in Eq. �4� and the electromotive force E
= �u	b� in Eq. �5� in terms of the large-scale variables �U�
and �B�. In the absence of nondiffusive fluxes, the stress can
be expressed as Sij =−Nijkl

T �k�Ul�, where Nijkl
T is called the

turbulent viscosity tensor, which can add to the molecular
viscosity in Eq. �4�. On the other hand, the electromotive
force is usually assumed to depend linearly on the mean
magnetic field and only the two first terms are kept �propor-
tional to the magnetic field and its first derivative�. Follow-
ing �3�, this expansion can be written as

Ei = �ij�Bj� + �� 	 B�i − �ij�� 	 �B�� j − �
 	 �� 	 �B���i

− �ijk�� j�Bk� + �k�Bj��/2. �7�

The first term on the right-hand side �RHS� of Eq. �7� is the
� effect which can be shown to generate magnetic field on
large scale for a helical turbulence. It is thus a perfect can-
didate to explain magnetic fields in systems influenced by
Coriolis force such as in the stellar convection zones. The
second term on the RHS describes a transport of magnetic
flux by turbulence. The third and fourth terms in Eq. �7� can
be described by introducing an anisotropic turbulent diffusiv-
ity. The last term proportional to � does not allow a simple
interpretation. The presence of the additional terms besides
the � and � effect is possible only for anisotropic or/and
inhomogeneous turbulence.

There has been accumulating evidence that a strong shear
reduces turbulent transport via shear stabilization by flow
shear �4�. This is basically because shear advects turbulent
eddies differentially, elongating and distorting their shapes,

PHYSICAL REVIEW E 80, 026302 �2009�

1539-3755/2009/80�2�/026302�12� ©2009 The American Physical Society026302-1

http://dx.doi.org/10.1103/PhysRevE.80.026302


thereby rapidly generating small scales which are ultimately
disrupted by molecular dissipation on small scales �see Fig.
1�. That is, flow shear facilitates the cascade of various quan-
tities such as energy to small scales �i.e., direct cascade� in
the system, enhancing their dissipation rate. As a result, tur-
bulence level as well as turbulent transport of these quanti-
ties can be significantly reduced compared to the case with-
out shear. Another important consequence of shearing is to
induce anisotropic transport and turbulent level since flow
shear directly influences the component parallel to itself �i.e.,
the x component in Fig. 1� via elongation while only indi-
rectly the other two components �i.e., the y and z components
in Fig. 1� through enhanced dissipation and incompressibil-
ity. Indeed, the flow shear has been shown to significantly
reduce the turbulence intensity and the turbulent transport of
angular momentum, particle mixing, and magnetic diffusion
both in hydrodynamics �5,6� and magnetohydrodynamics
�7�. In �8�, by assuming a uniform large-scale magnetic field,
we showed that the � effect is quenched by flow shear and
magnetic field.

In this paper, we first examine the effect of nonuniform
magnetic field on the linear stability of MHD fluids. We then
proceed to investigate the effect of a nonuniform magnetic
field on MHD turbulence. A consistent derivation of turbu-
lent magnetic diffusion �� effect� of nonuniform field in
three-dimensional �3D� MHD is crucial since there has been
controversy over the � suppression by strong magnetic field
�9�. In comparison, in two-dimensional MHD, the � effect
was shown to be severely quenched by magnetic field and
also by shear flow �10�. Furthermore, in the presence of shear
flow, another interesting effect of magnetic shear in nonuni-
form magnetic field is that the latter can interfere with flow
shear and thus weaken the quenching of turbulence by flow
shear, as shown in 3D reduced MHD turbulence �11,12�. We
investigate if this result holds in 3D MHD by quantifying the
effect of magnetic shear on turbulence intensity and turbulent
transport. The remainder of the paper is organized as follows.
In Sec. II, we present the main governing equations and the
quasilinear approximation that is used to solve for the turbu-
lent fields. We then present the calculations of the transport
coefficients �turbulent viscosity and � effect� in the limit
where the uniform component of the large-scale magnetic
field is negligible in Sec. III and then in the other extreme
limit where it is very strong �compared to shear flow� in Sec.
IV. Conclusions are provided in Sec. V.

II. MODEL

A. Magnetohydrodynamical equations

We use the similarity of the Navier-Stokes equation �1�
and induction equation �2� and work in terms of Elsasser
variables �13� instead of the velocity and magnetic fields:
�+=U+B and �−=U−B. Assuming a unit magnetic
Prandtl number ��=��, the MHD Eqs. �1�–�3� can be rewrit-
ten as

�t�
+ + �− · ��+ = − �P + ���+ + f , �8�

�t�
− + �+ · ��− = − �P + ���− + f , �9�

� · �+ = � · �− = 0. �10�

To study the effect of shear flows and magnetic fields on
small-scale turbulence, we prescribe a large-scale flow of the
form �U�=−xAey and a nonuniform large-scale magnetic
field �B�= �B0−B1x�ey. The chosen configuration �with par-
allel velocity and magnetic field� ensures that there is no
direct influence of �U� on �B�. To solve the equations for the
Elsasser variables, �+=�+− ��+�=�+− �U+B� and �−

=�−− ��−�=�+− �U−B�, we use the quasilinear approxi-
mation assuming that the interaction between fluctuating
fields is negligible compared to the interaction between
large- and small-scale fields. The equations for the fluctuat-
ing fields can then be written as

�t�
+ + ��−� · ��+ + �− · ���+� = − �p + ���+ + f , �11�

�t�
− + ��+� · ��− + �+ · ���−� = − �p + ���− + f , �12�

� · �+ = � · �− = 0, �13�

where p is the fluctuation in the pressure. To solve these
equations, we use vanishing initial conditions: �+=�−=0 at
t= t0. An equilibrium is then reached at long times when the
power injected by the forcing balances the dissipation. To
solve Eqs. �11�–�13�, we introduce a time-dependent Fourier
transform:

Y�x,t� =
1

�2��3� d3kei�kx�t�x+kyy+kzz�Ỹ�k,t� , �14�

where we choose kx�t�=kx�t0�+Aky�t− t0� to account nonper-
turbatively for the effect of the nonuniform components of
�U� and �B�. Fourier transformation of Eqs. �11�–�13� leads
to the following equations:

�t
̃i
� � kyB1�kx


̃i
� − �A � B1�
̃i

�
i2

= � iB0ky
̃i
� − ikip̃ − �k2
̃i

� + f̃ i, �15�

kx
̃x
� + ky
̃y

� + kz
̃z
� = 0. �16�

Note that the time dependence of the wave number cancels
exactly the advection by the mean velocity shear �see �5� for
details� and that the second term on the left-hand side of Eq.
�15� is obtained by Fourier transform of the advection by the
mean magnetic shear in the following way:

Typical distance an eddy can transport a passive scalar field

Background shearing flow

Turbulent eddy

X

y

FIG. 1. Sketch of the effect of shear on a turbulent eddy.
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FT�B1x�y
i
�� =� d3xe−i�kx�t�x+kyy+kzz�B1x�y
i

�

= ikyB1� d3xi�kx
�e−i�kx�t�x+kyy+kzz��
i

�

= − kyB1�kx

̃i

�. �17�

Changing the time variable from t to �=kx�t� /ky =kx�t0� /ky
+A�t− t0�, the first two terms on the left-hand side of Eq.
�15� can be grouped together as �t=A�� and ky�kx

=��. As-
suming the forcing to be incompressible, Eqs. �15� and �16�
can be rewritten as

�1 � R���
̃i
� − �1 � R�
̃x

�
i2

= � i�
̃i
� −

1

g2 + �2	�

1

b

��1 − R�
̃x

+ + �1 + R�
̃x
−�

− ��g2 + �2�
̃i
� +

1

A
f̃ i, �18�

�
̃x
� + 
̃y

� + b
̃z
� = 0. �19�

Here, R=B1 /A is the ratio of the magnetic shear to the
velocity shear; �=B0ky /A is the ratio of the Alfvén fre-
quency to the flow shear; b=kz /ky and g2=1+b2; �=�ky

2 /A.
Note that Eqs. �18� and �19� are invariant under the follow-

ing transformation: �↔−�, R↔−R, and �̃+↔ �̃−. Conse-

quently, �̃− can be obtained from �̃+ �and vice versa� by
changing the sign of � and R. Using the following variables:


̃x
+��� =

�+���
�1 − R��g2 + �2�

and 
̃x
−��� =

�−���
�1 + R��g2 + �2�

,

�20�

the x component of Eq. �18� can be rewritten as

���
+ =

i��+

1 − R
+

�

g2 + �2 ��+ − �−� −
�

1 − R
�g2 + �2��+

+
�g2 + �2�

A
f̃ x. �21�

The coupled equations for �+ and �− in Eq. �21� can be
combined to a closed equation for �+:

��
2�+ + �−

1

�
+

2��g2 + �2�
1 − R2 −

2i�R
1 − R2����

+

+ � i�

�g2 + �2�

 �

�1 − R��
−

�

1 + R�
+

�

1 − R
 �2 − g2

�
+

2R�

1 + R� +
�2�g2 + �2�2 + �2

1 − R2 ��+

= ���� �g2 + �2� f̃ x

A�
� +

i� + ��g2 + �2�
1 + R

�g2 + �2�
f̃ x

A
. �22�

Two initial conditions are needed in order to solve Eq. �22�.
At �=�0=kx�t0� /ky, we assume that initially there is no ve-
locity and magnetic perturbations ��+��=�0�=�−��=�0�=0�.
The use of ����0�=0 in Eq. �21� gives us ����

+���=�0�
= f̃ x��=�0��g2+�0

2� /A as the second initial condition. As Eq.
�22� cannot be solved in general case, we will consider the
two cases of weak and strong magnetic fields given by �
=B0ky /A�1 and ��1, respectively. Note that the weak
magnetic field limit does not restrict the magnitude of the
magnetic shear. The only constraint on the magnetic shear
comes from our assumption that the system is stable �i.e.,
�R��1 as shown in the next subsection�.

B. Linear stability

We start by studying the stability of the large-scale fields
�U� and �B� by considering the behavior of the perturbations
of Eq. �22� in the long-time limit. As Eq. �22� is a second-
order differential equation in �, the homogeneous equation
has two independent solutions �1��� and �2���. Using WKB
theory �see Appendix B for details�, we can show that these
two functions have the following asymptotic behavior in the
large � limit:

�1��� �
1

�2exp�−
�

1 + R
Q��� −

i�

1 + R
�� , �23�

�2��� � � exp�−
�

1 − R
Q��� +

i�

1 − R
�� , �24�

where Q�x�=g2x+x3 /3 and the � symbol stands for
asymptotic behavior in the large � limit. Equations �23� and
�24� show that if �R��1 one of the solutions of the homo-
geneous problem is exponentially divergent for large �. This
is a similar result to that found by �14� who studied the
resistive tearing instability in the context of fusion plasmas.
Interestingly, the tearing instability is stabilized by flow
shear if �R��1. Note that the limit R→0 is singular as we
do not recover the result of �5� with no magnetic shear. This
is due to an additional dissipative layer imposed by the mag-
netic field. Consequently, the effect of the magnetic shear is
twofold. On the one hand, it renormalizes the diffusion rate �
in the exponential factor to � / �1−R� and � / �1+R� �with a
continuous limit to the case R=0�. On the other hand, mag-
netic shear changes the scaling with � in front of the expo-
nential in a noncontinuous fashion �note that the limit �=0 is
also singular as this asymptotic behavior does not recover the
result for the ideal system that can be computed exactly�. In
the following, we restrict our study to the case where the
system is stable ��R��1�.

C. Transport coefficients

Our main interest is in the total stress and the electromo-
tive force, which determine the growth/decay of the large-
scale velocity field and the large-scale magnetic field, respec-
tively. The assumption of a large-scale flow is in the y
direction and depending only on the x coordinate has two
implications for the stress. First, only the components Nijxy

T
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do not vanish. Second, only the y component of Eq. �4� is of
interest and the divergence of the Reynolds stress reduces to
�xSxy �the two other terms involves derivative with respect to
y and z�. Consequently, in the following, we are interested in
only one component of the total stress S defined as

S � Sxy = �uxuy� − �bxby� =
1

2
�
x

+
y
− + 
x

−
y
+� . �25�

Note that this total stress consists of the difference between
the Reynolds stress �uxuy� and Maxwell stress �bxby�. In the
following, we refer to turbulent viscosity �T as the only com-
ponent of interest �T=Nxyxy

T . For the assumed shear flow
�U�=−Axey, the turbulent diffusivity can be computed as
S=�TA.

Similarly, as we chose the large-scale magnetic field to
depend only on x, the only components of �	E are the ones
in the y and z directions given by

Ey = �uzbx − uxbz� = �
x
+
z

− − 
x
−
z

+�/2, �26�

Ez = �uxby − uybx� = �
y
+
x

− − 
y
−
x

+�/2. �27�

For our chosen configuration of the magnetic field which
depends only on x, the electromotive force has only the fol-
lowing terms �see �15� for a general expression of the elec-
tromotive force for arbitrary shear flows�:

Ey = �yyB0, �28�

Ez = ��zy + �z�B0 + �B1, �29�

where �yy and �zy are the components of anisotropic �due to
shear flow� � effect, �z is the turbulent transport of magnetic
flux, and � characterizes the turbulent � effect. Note here
that only these three coefficients are present in our configu-
ration. In particular, phenomena such as the �	J �3� and
shear current effects �15�, which have been advocated for
turbulence affected by rotation and shear, are absent here.
For instance the shear current effect vanishes because the
large-scale vorticity and the curl of the magnetic field are
parallel to each other �15�.

D. Forcing

To calculate the correlation functions involved in the
transport coefficients �see Eqs. �25�–�27��, we consider an
incompressible forcing which is spatially homogeneous and
temporally stationary with a short correlation time � f. Spe-
cifically, in Fourier space, the correlation function of the
forcing is taken as

� f̃ i�k1,t1� f̃ j�k2,t2�� = � f�2��3
�k1 + k2�
�t1 − t2��ij�k2� .

�30�

As noted previously, the � effect can be linked to the helicity
of the turbulent flow. Consequently, we consider a forcing
with both a symmetric part �with energy spectrum E� and a
helical part �with helicity spectrum H� given by

�lm�k� = E�k�

lm −
klkm

k2 � + i�lmpkp
H�k�

k2 . �31�

In the following, the turbulence intensity, turbulent viscosity,
and � effect are expressed in terms of the kinetic energy e0
= �u2� and helicity h0= �u�·�	u�� of the flow created by the
forcing f in absence of shear and magnetic field:

e0 =
� f

�2��2�
0

+�

dk
E�k�

�
, �32�

h0 =
� f

�2��2�
0

+�

dk
H�k�

�
. �33�

The presence of the viscosity � in the denominator of Eqs.
�32� and �33� is due to the fact that without dissipation ��
=0�, there is nothing to dissipate the energy injected by the
�small-scale� forcing causing the accumulation of small-scale
fields. Therefore, the growth of kinetic energy or transport is
unbounded. In Appendix A, we show the derivation of Eqs.
�32� and �33�.

III. WEAK MAGNETIC FIELD (�™1)

In this section, we investigate the influence of magnetic
and flow shear on turbulence properties in the limit of a very
weak magnetic field B0 �i.e., ��1�. In the following, we thus
keep the magnetic field only to the lowest order to compute
the � effect. As it seems impossible to exactly solve Eq. �22�
even for �=0, we obtain our results in two different limits of
weak ��=�ky

2 /A�1� and strong ���1� shear in comparison
with the diffusion rate ��ky

2�.

A. Weak flow shear: �š1

In the case of a shearing rate much weaker than diffusion
rate ��=�ky

2 /A�1�, we can perform a WKB analysis �very
similar to that of Appendix B� of Eq. �22� by using ��1 as
a large parameter, obtaining the following two solutions of
the homogeneous system �22�:

�1��� =
�

�g2 + �2�3/2exp�−
�

1 + R
Q��� −

i�

1 + R
��

�
�

�g2 + �2�3/2exp�E−���� , �34�

�2��� = �g2 + �2 exp�−
�

1 − R
Q��� +

i�

1 − R
��

� �g2 + �2 exp�E+���� , �35�

to leading order in �−1. Here,

Q�x� = x2/3 + g2x , �36�

E−�x� = − �/�1 + R�Q�x� − i�/�1 + R�x , �37�

E+�x� = − �/�1 − R�Q�x� + i�/�1 − R�x . �38�
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Using the method of variations of parameters, the full solu-
tion of Eq. �22� with the initial conditions �+��=�0�=0 and

����
+���=�0�= f̃ x��=�0��g2+�0

2� /A is found as

�+ � �
�0

�

du
�g2 + u2� f̃ x�u�

A
�g2 + �2

�g2 + u2
exp�E+��� − E+�u�� ,

�39�

where E+ is defined in Eq. �38�. The z component of the field
can be obtained by integrating the z component of Eq. �18�
with the following result:


̃z
+ � �

�0

�

du
f̃z�u�

A�1 − R�
exp�E+��� − E+�u��

− b�
�0

�

du
�g2 + u2 f̃ x�u�

A�1 − R�
exp�E+��� − E+�u��I+�u,�� .

�40�

Here we defined the integral I+ as follows:

I+�u,�� = �
u

� dx

�g2 + x2�3/2�1 + exp�−
2R�

1 − R2 �Q�x� − Q�u��

−
2i�

1 − R2 �x − u��� . �41�

The y component can be obtained using the incompressibility
condition.

Using Eqs. �39� and �40�, we can compute the turbulent
intensity and turbulent transport coefficients in a similar way
as shown in the beginning of Appendix E. The results are as
follows:

�ux
2� =

� f

�2��3A� d3k
kH

2

ky
2 E�k�Ivx�k� , �42�

�bx
2� =

� f

�2��3A� d3k
kH

2

ky
2 E�k�Ibx�k� , �43�

�uz
2� =

� f

�2��3A� d3kE�k�Ivz�k� , �44�

�bz
2� =

� f

�2��3A� d3kE�k�Ibz�k� , �45�

S =
� f

�2��3A� d3k
E�k�

1 − R2 IS�k� , �46�

Ey = −
� f

�2��3A� d3k
ky

k2

H�k�
1 − R2 I��k� , �47�

Ez =
� f

�2��3A� d3k
E�k�

1 − R2 I��k� , �48�

where kH
2 =ky

2+kz
2 and the various integrals I’s are provided in

Eqs. �C1�–�C7� of Appendix C. In the limit ��1, the ap-
proximate value of these integrals in Eqs. �42�–�48� can be
evaluated and then used for the computation of the turbulent
intensity and transport. The results are as follows:

�ux
2� =

� f

�2��3� d3k
kH

2 E�k�
2�k4

1 − R2/2
1 − R2 , �49�

�bx
2� =

� f

�2��3� d3k
kH

2 E�k�
2�k4

R2/2
1 − R2 , �50�

�uz
2� =

� f

�2��3� d3k
�kx

2 + ky
2�E�k�

2�k4

1 − R2/2
1 − R2 , �51�

�bz
2� =

� f

�2��3� d3k
�kx

2 + ky
2�E�k�

2�k4

R2/2
1 − R2 , �52�

�T = −
� f

�2��3� d3k
E�k��1 − R2�

4�2k8 ��kx
2 − kH

2 �k2 + kz
2kH

2 � ,

�53�

�yy = −
� f

2�2��3� d3k
ky

2H�k�
�2k6 , �54�

� =
� f

�2��3� d3k
kz

2E�k��1 − R2�
�2k6 . �55�

Using the fact that the forcing is isotropic, Eqs. �49�–�55�
can be simplified by integration over the angular variable �
and � �after expressing the wave vector in spherical coordi-
nates: kx=k cos �, ky =k sin � cos �, and kz=k sin � sin ��.
Equations �49�–�55� can then be recast as

�ux
2� =

� f

�2��2�
0

+�

dk
2E�k�

3�

1 − R2/2
1 − R2 � e0W1�R� , �56�

�bx
2� =

� f

�2��2�
0

+�

dk
2E�k�

3�

R2/2
1 − R2 � e0W2�R� , �57�

�uz
2� =

� f

�2��2�
0

+�

dk
2E�k�

3�

1 − R2/2
1 − R2 � e0W1�R� , �58�

�bz
2� =

� f

�2��2�
0

+�

dk
2E�k�

3�

R2/2
1 − R2 � e0W2�R� , �59�

�T =
� f

�2��2�
0

+�

dk
E�k��1 − R2�

�2k2

1

30
�

e0

3�k2W3�R� , �60�

�yy = −
� f

�2��2�
0

+�

dk
H�k�
3�2k2 �

h0

3�k2 , �61�
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� =
� f

�2��2�
0

+�

dk
2E�k��1 − R2�

3�2k2 �
2e0

3�k2W3�R� . �62�

In Eqs. �56�–�62�, the functions Wn, which are plotted on
Fig. 2, characterize the dependence of turbulence intensity
and transport on the magnetic shear. Figure 2 shows that the
magnetic shear tends to increase the turbulence intensity
whereas it decreases the turbulent dissipation of both mo-

mentum and magnetic field ��T and ��. Furthermore, the �
effect is not affected by the magnetic shear and is the same
as in the kinematic regime. The increase in the turbulence
intensity can be understood in terms of instability of the
homogeneous part of Eq. �22�. As can be seen in Eqs. �23�
and �24�, the system tends to becomes unstable �the expo-
nential decay being slower� when the magnetic shear is in-
creased. These results are summarized in Table I.

B. Strong flow shear: �™1

The homogeneous part of Eq. �22� has two independent
solutions �1��� and �2���. Guided by the result of Sec. II B,
we rewrite these two solutions as

�1��� = C1���exp�−
�

1 + R
Q��� −

i�

1 + R
�� , �63�

�2��� = C2���exp�−
�

1 − R
Q��� +

i�

1 − R
�� . �64�

We can determine the asymptotic behavior of the unknown
functions: C1�����−2 and C2����� and for ��1 �see Ap-
pendix B for details�. Using the method of variation of pa-
rameters, the general solution of Eq. �22� is obtained as

�+��� � �
�0

�

du
�g2 + u2� f̃ x�u�

A �1

u
�u� u

W�u�
�C2���C1�u�eE+���+E−�u� − C2�u�C1���eE+�u�+E−�����

−
i� + ��g2 + u2�

1 + R
C2���C1�u�eE+���+E−�u� − C2�u�C1���eE+�u�+E−���

W�u�
� . �65�

Here W�t� is the Wronskian of the two solutions of the ho-
mogeneous problem; E+ and E− are defined in Eqs. �37� and
�38�. After a long algebra, we can compute all the compo-
nents of the fields to leading order in � with the following
results:

�+��� � �
�0

�

du
�g2 + u2� f̃ x�u�

A �C3�u�C2���eE+���−E+�u�

+ C4�u�C1���eE−���−E−�u�� , �66�


z
+��� � �

�0

�

du
f̃z�u�

�1 − R�AeE+���−E+�u�

−
b

1 − R��0

�

du
�g2 + u2� f̃ x�u�

A �eE+���−E+�u�

+ eE−���−E−�u��C5�u,�� . �67�

Here, note that the analytical form of the functions C3�u�,
C4�u�, and C5�u ,�� are unknown. However, their asymptotic
behavior for large arguments ��→�� can be computed from
those of C1 and C2. In particular, in the large � limit, the
function C5 is independent of �. As shown in Appendix E,

TABLE I. Summary of our results obtained in the weak mag-
netic field limit. f+�R� and f−�R� represent a function which in-
creases or decreases with magnetic shear R=B1 /A, respectively.

Weak flow shear
�=�ky

2 /A�1
Strong flow shear

��1

�vx
2� f+�R� �f+�R�

�vy
2���vz

2� f+�R� �2/3f+�R�
�bx

2� f+�R� �f+�R�
�by

2���bz
2� f+�R� �2/3f+�R�

�T f−�R� �2f+�R�
� f−�R� �2f+�R�

−1 −0.5 0 0.5 1
0

1

2

3

4

5

R

W
(R

)

W1
W2
W3

FIG. 2. �Color online� Dependence of W1�R�, W2�R�, and
W3�R� on the magnetic shear.
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the asymptotic dependence on � is sufficient for computing
the scaling of the turbulence intensity with the shear. By
using similar techniques as in Appendix E, the magnitude of
the turbulent velocity and magnetic field can be found to
leading order in � as

�ux
2� =

� f

�2��3�1 − R2�2A� d3k
k2kH

2 E�k�
ky

4 Jx�k� � e0�V1�R� ,

�68�

�uz
2� =

� f

3�2��3A� d3kE�k��−1/3�Jz1�k�V2�R�

+ Jz2�k�V3�R� + Jz3�k�V4�R��

� e0�2/3�V2�R� + V3�R� + V4�R�� , �69�

�bx
2� =

� fR2

�2��3�1 − R2�2A� d3k
k2kH

2 E�k�
ky

4 Jx�k� � e0�M1�R� ,

�70�

�bz
2� =

� f

3�2��3A� d3kE�k��−1/3�Jz1�k�M2�R�

+ Jz2�k�M3�R� + Jz3�k�M4�R��

� e0�2/3�M2�R� + M3�R� + M4�R�� . �71�

Here, the J’s are convergent integrals which are independent
of the velocity; V’s and M’s are defined as

V1�R� =
1

�1 − R2�2 , �72�

V2�R� =
1

4
��1 − R�−5/3 + �1 + R�−5/3 + 2�1 − R2�−2/3� ,

�73�

V3�R� =
1

2
�V2�R� + �1 − R2�−5/3� , �74�

V4�R� =
1

4�1 − R2�2 ��1 − R�1/3 + �1 + R�1/3 + 2�1 − R2�1/3� ,

�75�

M1�R� =
R2

�1 − R2�2 , �76�

M2�R� =
1

4
��1 − R�−5/3 + �1 + R�−5/3 − 2�1 − R2�−2/3� ,

�77�

M3�R� =
1

2
�M2�R� + R2�1 − R2�−5/3� , �78�

M4�R� =
1

4�1 − R2�2 ��1 − R�1/3 + �1 + R�1/3 − 2�1 − R2�1/3� .

�79�

Equations �68�–�71� show that both the turbulent intensity
and the magnetic field are reduced by strong flow shear A.
Furthermore, the quenching is anisotropic as the components
in the direction of the shear ��vx

2���bx
2��A−1� are much

more reduced than the components in the perpendicular di-
rection ��vz

2���bz
2��A−2/3� as A increases. Figure 3 shows

the dependence on the magnetic shear R of the velocity and
magnetic field amplitude: they are increasing functions of the
magnetic shear. This shows that the effect of the shear is to
increase the turbulent intensity. In other words, the magnetic
shear acts in the opposite way to the velocity shear, interfer-
ing with flow shear to weaken the quenching of turbulence
by flow shear.

In the limit ��1, the Reynolds stress and the electromo-
tive force can similarly be computed with the following tur-
bulent transport coefficients:

−1 −0.5 0 0.5 1
0

1

2

3

4

5

R

V
(R

)

V1
V2
V3
V4

−1 −0.5 0 0.5 1
0

1

2

3

4

5

R

M
(R

)

M1
M2
M3
M4

(a) (b)

FIG. 3. �Color online� Functions characterizing the dependence on the magnetic shear of the velocity �left� and magnetic field �right�.
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�T �
� f

�2��3A2� d3kE�k�
I��k�

1 − R2�ln
 �

1 − R2��
�

�2e0

�1 − R2��k2�ln
 �

1 − R2�� , �80�

� �
� f

�2��3A2� d3kE�k�I��k�
1

1 − R2

1

R
ln
1 + R

1 − R�
�

e0�2

�1 − R2��k2

1

R
ln
1 + R

1 − R� . �81�

Equation �80� shows that the turbulent viscosity and diffu-
sivity are reduced by a strong shear. Moreover, the reduction
in the turbulent viscosity is weaker by a logarithmic factor
than that in the turbulent diffusivity. Equation �63� also
shows that the effect of the magnetic shear is to increase the
turbulent viscosity and diffusivity. It thus weakens the
quenching effect of the shear flow. These results are again
summarized in Table I.

IV. STRONG MAGNETIC FIELD

For strong magnetic field ��=B0ky /A�1�, a WKB analy-
sis of Eq. �22� gives


̂x
+ �

1

A�1 − R��g2 + �2�
�0

�

�g2 + u2 f̃ x�u�

	exp�E+��� − E+�u��du , �82�


̂z
+ �

1

A�1 − R���0

�

exp�E+��� − E+�u�� f̃ z�u�du

−
b

A�1 − R���0

�

exp�E+��� − E+�u��

	I�u,���g2 + u2 f̃ x�u�du , �83�

to leading order in �−1. Here

I = �
u

� du

�g2 + u2�3/2 =
1

g2� �

�g2 + �2
−

u
�g2 + u2� , �84�

and E+ and E− are given in Eqs. �37� and �38�.
The solution for the conjugate Elsasser variables, 
̂x

− and


̂z
−, can be obtained by changing the sign of � and R in Eqs.

�82� and �83�. Using Eqs. �82� and �83�, we can compute the
intensity of turbulence, with the following result to leading
order in �−1:

�ux
2� = �bx

2� =
� f�1 + R2�

2�1 − R2�2�2��3A� d3k
kH

2 E�k�
ky

2 T�k�

�
��1 + R2�
�1 − R2�2 e0, �85�

�uz
2� = �bz

2� =
� f

3�2��3A� d3kE�k�S0�R���1/3�
 3

2�
�1/3

� �2/3S0�R�e0. �86�

Here, kH
2 =ky

2+kz
2 and T�k�=��ky� /2kH−arctan�kx /kH�. The

fact that the velocity and magnetic fields are in equipartition
is due to a strong magnetic field which drives an Alfvénic
turbulence. Note that the effect of the magnetic shear is in-
cluded in the term:

S0�R� =
1

4
��1 − R�−5/3 + �1 + R�−5/3� . �87�

Equations �85� and �86� show that the turbulence is unaf-
fected by B0 while severely quenched by flow shear. Further-
more, turbulence is less severely reduced in the direction
perpendicular to the shear than in the direction of the shear.
In particular, we see that, even in the limit of strong magnetic
field, the turbulence intensity is reduced solely by the flow
shear. This is because the magnetic field forces the turbu-
lence to be more wavelike �due to Alfvén waves�, thus in-
creasing the memory time, without necessarily reducing its
amplitude. Note that both �ux

2� and �uz
2� increase with the

magnetic shear. That is, the effect of the magnetic shear is
again to weaken the quenching of the flow shear.

Similarly, the turbulent viscosity and the � effect are
found as

�T =
� f�1 − R2�

4�2��3 � d3kE�k�
kH

2 kz
2ky

2

k4

B0
2

�B0
2ky

2 + �k2�2 , �88�

�yy = −
� f

2�2��3� d3k
ky

2H�k�
k2�B0

2ky
2 + �2k2�

, �89�

to leading order in �−1. The � effect is the same as in the
case without magnetic shear showing that the magnetic shear
has no effect on the � effect. In comparison, the turbulent
viscosity �T is reduced as the magnetic shear increases. Fur-
thermore, we find that the turbulent diffusivity � vanishes to
leading order. Nontrivial diffusivity will be found only at the
higher order in �−1. This means that magnetic fields hardly
diffuse when they are too strong, which is in agreement with
numerical simulations �16�.

V. CONCLUSION

To understand the properties of astrophysical and geo-
physical magnetic fields, we investigated the turbulent trans-
port of nonuniform magnetic field in the presence of flow
shear. The linear analysis reveals that magnetic shear stron-
ger than flow shear leads to instability. We considered the
two limits of strong and weak magnetic fields. In the weak
magnetic field limit, the magnitude of the magnetic shear is
limited only by the stability condition that the magnetic shear
is to be weaker than the flow shear.

In the case of a weak magnetic field, the flow shear is
shown to reduce both the turbulence intensity and turbulent
transport due to shear stabilization in agreement with our
previous results �5,6�. In particular, turbulent viscosity and
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magnetic diffusivity �� effect� are strongly suppressed as
A−2 for strong flow shear A. When magnetic shear is incor-
porated the turbulence intensity is increased. This is due to
the fact that magnetic shear tends to make the system un-
stable as shown by our stability analysis. In contrast, the
turbulent transport �both turbulent viscosity and diffusivity�
is reduced by magnetic shear if the flow shear is weaker than
diffusion rate while it is increased if the shear is stronger. In
short, in all the cases with a strong flow shear, the magnetic
shear opposes the effect of flow shear, thereby compensating
the quenching of turbulence by shear stabilization. These re-
sults are summarized in Table I.

For strong magnetic field, we found that the turbulent
intensity is not quenched by strong magnetic field. In com-
parison, the turbulent viscosity and � effect are reduced by
strong magnetic field with scalings B�

−1 and B�
−2, respectively.

On the other hand, the magnetic shear affects both the tur-
bulence intensity and the turbulent transport–that is, it en-
hances the turbulence intensity while quenching the turbulent
transport. Furthermore, we found that the turbulent diffusiv-
ity of magnetic field �the � effect� vanishes for strong mag-
netic field to leading order indicating that strong magnetic
fields hardly diffuse. To recapitulate, the � effect is quenched
by magnetic field for a large constant magnetic field whereas
in the weak magnetic field limit, it can be reduced by strong
flow shear.

It will be interesting to extend our theory to incorporate
the effects of rotation which will consistently give rise to �

effect and nondiffusive momentum transport �� effect� due
to shear-induced anisotropy �17�. How the � effect, � effect,
turbulent viscosity, and particle transport are affected by ro-
tation, magnetic field, and shear would be of great interest
with important practical implications. These issues will be
addressed in future publications.
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APPENDIX A: KINETIC ENERGY AND � EFFECT IN THE
ABSENCE OF SHEAR

In the case without large-scale shear flow, the linearized
equation for the fluctuating velocity can be written as

�tu�x,t� = − �p�x,t� + ��u�x,t� + f�x,t� . �A1�

In the case where the forcing is incompressible, the pressure
vanishes �p=0� and the solution of this equation can easily
be obtained in Fourier space as

ũ�k,t� = �
0

t

duf̃�k,u�exp�− �k2�t − u�� . �A2�

Using Eq. �A2�, the turbulent intensity can be computed as
follows:

�u2� =
1

�2��6� d3k1d3k2ei�k1+k2�·x�
0

t

du1�
0

t

du2e−��k1
2�t−u1�+k2

2�t−u2���f̃�k1,u1� · f̃�k2,u2��

=
� f

�2��3� d3k1�
0

t

du1e−2�k1
2�t−u1�2E�k1� =

� f

�2��3� d3k1
E�k1�
�k1

2 �1 − e−2�k1
2t� �

� f

�2��3� d3k1
E�k1�
�k1

2 =
2� f

�2��2�
0

+�

dk1
E�k1�

�
.

�A3�

The second line in Eq. �A3� is obtained by using the correlation function of the forcing given by Eq. �30�. The fourth line is
obtained by taking the long-time limit �t→�� while the last line is obtained by integrating over the angular variables.

Similarly the kinetic helicity can be obtained as

�u · �� 	 u�� =
1

�2��6� d3k1d3k2ei�k1+k2�·x�
0

t

du1�
0

t

du2e−��k1
2�t−u1�+k2

2�t−u2�� 	 ��lmp�ik2m� f̃ l�k1,u1� f̃ p�k2,u2��

=
� f

�2��3� d3k1�
0

t

du1e−2�k1
2�t−u1��lmp�− ik1m��lp�− k1�

=
� f

�2��3� d3k1�
0

t

du1e−2�k1
2�t−u1�2H�k1�

=
� f

�2��3� d3k1
H�k1�
�k1

2 �1 − e−2�k1
2t� �

� f

�2��3� d3k1
H�k1�
�k1

2 =
2� f

�2��2�
0

+�

dk1
H�k1�

�
. �A4�
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APPENDIX B: WKB ANALYSIS IN THE LONG-TIME
LIMIT

To study the behavior of Eq. �22� for large time, we in-
troduce a small parameter � and write �=x /�. In terms of the
new variable x, the homogeneous part of Eq. �22� can be
rewritten as

�2�x
2�+�x� + ��−

�

x
+

2�

1 − R2
g2 +
x2

�2� −
2i�R
1 − R2��x�

+�x�

+ � i��2

�g2�2 + x2�
 ��

�1 − R�x
−

x

��1 + R��
+

�

1 − R
 x2 − �2g2

�x
+

2Rx

��1 + R��
+

�2�g2 + 
 x

�
�2�2

+ �2

1 − R2 ��+�x� = 0. �B1�

Using the following WKB ansatz:

�+�x� = exp� 1

�3 �S0�x� + �S1�x� + ¯�� , �B2�

and solving order by order �in ��, we can obtain the two
solutions of the homogeneous Eq. �B1� with the following
values of S0, S1, S2, and S3:

Solution 1 Solution 2

S0�x� − �x3

3�1+R� − �x3

3�1−R�
S1�x� 0 0

S2�x� − g2+ig
1+R x − g2−ig

1−R x

S3�x� −2 ln x ln x

Plugging this result into Eq. �B2� and changing back to
the original variable �=x /�, we obtain the two following
approximate solutions to the homogeneous equation:

�1��� �
1

�2exp�−
�

1 + R
Q��� −

i�

1 + R
� +

1

�
l1���� ,

�B3�

�2��� � � exp�−
�

1 − R
Q��� +

i�

1 − R
� +

1

�
l2���� .

�B4�

Here, Q�x�=g2x+x3 /3, l1 and l2 are two functions which
converge in the large � limit.

APPENDIX C: INTEGRALS IN THE WEAK SHEAR LIMIT

In the computation of the turbulent intensity and transport coefficients, we obtained the following integrals in Eqs.
�42�–�48�:

Ivx = �
a

+� d�

4�g2 + �2�� e2E0
+�a,��

�1 − R�2 +
eE0

−�a,��

�1 + R�2 +
2e2E0�a,��

1 − R2 cos� 2�

1 − R2 �� − a��� , �C1�

Ibx = �
a

+� d�

4�g2 + �2�� e2E0
+�a,��

�1 − R�2 +
eE0

−�a,��

�1 + R�2 −
2e2E0�a,��

1 − R2 cos� 2�

1 − R2 �� − a��� , �C2�

Ivz = �
a

+�

d�
1 + a2

4�g2 + a2�� eE0
−�a,��

�1 − R�2 +
e2E0

+�a,��

�1 + R�2 +
2e2E0�a,��

1 − R2 cos� 2�

1 − R2 �� − a���
+

ab2

�g2 + a2� eE0
+�a,��

�1 − R�2 Ic
+ +

e2E0
−�a,��

�1 + R�2 Ic
− +

e2E0�a,��

1 − R2 Rl�e2i���−a�/�1−R2��I+�a,�� + I−�a,�����
+

b2g2

g2 + a2� eE0
+�a,��

�1 − R�2 �I0
+�a,���2 +

e2E0
−�a,��

�1 + R�2 �I0
−�a,���2 +

e2E0�a,��

1 − R2 Rl�e2i���−a�/�1−R2��I+�a,��I−�a,������ , �C3�
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Ibz = �
a

+�

d�
1 + a2

4�g2 + a2�� eE0
−�a,��

�1 − R�2 +
e2E0

+�a,��

�1 + R�2 −
2e2E0�a,��

1 − R2 cos� 2�

1 − R2 �� − a���
+

ab2

�g2 + a2� eE0
+�a,��

�1 − R�2 Ic
+ +

e2E0
−�a,��

�1 + R�2 Ic
− −

e2E0�a,��

1 − R2 Rl�e2i���−a�/�1−R2��I+�a,�� + I−�a,�����
+

b2g2

g2 + a2� eE0
+�a,��

�1 − R�2 �I0
+�a,���2 +

e2E0
−�a,��

�1 + R�2 �I0
−�a,���2 −

e2E0�a,��

1 − R2 Rl�e2i���−a�/�1−R2��I+�a,��I−�a,������ , �C4�

IS = �
a

+� d�

�g2 + �2
e2E0�a,���cos� 2�

1 − R2 �� − a��
−
��g2 + a2�
�g2 + �2

+
ab2

�g2 + a2� +
b2�g2 + a2�

2
Rl�e2i���−a�/�1−R2��I+�a,�� + I−�a,����� ,

�C5�

I� = �
a

+�

d�
�g2 + a2

�g2 + �2
e2E0�a,��ky sin� 2�

1 − R2 �� − a�� ,

�C6�

I� = �
a

+� d�

�g2 + �2
e2E0�a,��b

2�g2 + a2�
2

Rl�e2i���−a�/�1−R2�

	�I+�a,�� − I−�a,���� . �C7�

Here, Rl stands for the real part; I+ is defined in Eq. �41� and
I− is obtained from I+ by changing the signs of R and �; we
defined a=kx /ky and the following functions:

E0
+�a,�� = −

�

1 − R
�Q��� − Q�a�� , �C8�

E0
−�a,�� = −

�

1 + R
�Q��� − Q�a�� , �C9�

E0�a,�� = −
�

1 − R2 �Q��� − Q�a�� , �C10�

I0
+�a,��

= �
a

� dx

�g2 + x2�3/2�1 + exp�−
2R�

1 − R2 �Q�x� − Q�a���� ,

�C11�

Ic
+�a,�� = �

a

� dx

�g2 + x2�3/2�1 + exp�−
2R�

1 − R2 �Q�x� − Q�a���
	cos� 2�

1 − R2 �x − a��� , �C12�

Is
+�a,�� = �

a

� dx

�g2 + x2�3/2�1 + exp�−
2R�

1 − R2 �Q�x� − Q�a���
	sin� 2�

1 − R2 �x − a��� . �C13�

The integrals I0
−�a ,��, Ic

−�a ,��, and Is
−�a ,�� are obtained by

changing the signs of R and � in Eqs. �C8�–�C13�.

APPENDIX D: ASYMPTOTIC EXPANSION

Expanding all the integrals in Eq. �C1� in powers of �−1,
we obtain the following two leading orders �by keeping only
the terms which are even in all wave numbers as the terms
with an odd number of wave numbers would vanish upon
angular integration�:

Ivx =
1

8��g2 + a2�2
 1

�1 − R�
+

1

�1 + R�
+ 2�

=
1

2��g2 + a2�2

1 − R2/2
1 − R2 , �D1�

Ibx =
1

8��g2 + a2�2
 1

�1 − R�
+

1

�1 + R�
− 2�

=
1

2��g2 + a2�2

R2/2
1 − R2 , �D2�

Ivz =
1 + a2

8��g2 + a2�2
 1

�1 − R�
+

1

�1 + R�
+ 2�

=
1 + a2

2��g2 + a2�2

1 − R2/2
1 − R2 , �D3�

Ibz =
1 + a2

8��g2 + a2�2
 1

�1 − R�
+

1

�1 + R�
− 2�

=
1 + a2

2��g2 + a2�2

R2/2
1 − R2 , �D4�
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IS =
a2�g2 + a2� − g2

4�2�g2 + a2�4 �1 − R2�2, �D5�

I� =
��1 − R2�

2�2�g2 + a2�2 , �D6�

I� =
b2R

�2�g2 + a2�3 �1 − R2�2. �D7�

APPENDIX E: INTEGRALS IN THE STRONG FLOW
SHEAR LIMIT

As an example of how to compute the correlation func-
tions, we show the main steps to obtain �X2�. The Fourier

transform X̃ of X is given by

X̃ = �
�0

�

duG�u�F���exp�− ��Q��� − Q�u���f i�u� , �E1�

where Q is defined in Eq. �36�. The correlation of the vari-
able X can then be computed as �see �5� for details�

�X2� =
� f

�2��3A� d3kKii�k�G�a�2�
a

+�

F2���

	exp�− ��Q��� − Q�a���d� , �E2�

where a=kx /ky.

For the computation of the correlation in the strong shear
limit ���1�, we have to compute � integrals of the form

K = �
a

+�

F2���exp�− ��Q��� − Q�a���d� . �E3�

Here F2 has the scaling F2������ in the large � limit. When
��−1, K exists for �=0 thus, the ��1 limit can be easily
obtained by putting �=0 in Eq. �E3�. This is, however, not
the case when ��−1 as the integral diverges as �→0. In that
case, by making the substitution y=2��3 /3, integral �E3� can
be computed in the ��1 limit as

K = �
2�a3/3

+�

F2�
3y

2�
�1/3�exp�− y + 
3y�2

2
�1/3�
3y

2�
�−2/3dy

2�

� �
0

+�

exp�− y�
3y

2�
���−2�/3dy

2�

�
1

3

 3

2�
���+1�/3�

0

+�

exp�− y�y��−2�/3dy

�
1

3

 3

2�
���+1�/3

�
� + 1

3
� , �E4�

where � is the Gamma function. In summary, if the integrand
has a scaling �� �excluding the exponential factor� in the
large � limit, the correlation function scales as �−��+1�/3 in the
strong shear limit ���1�. For instance, Eq. �67� shows that
in the large � limit, the integrand does not depend on � ��
=0�. Therefore, for the computation of �uz

2�, the � integral
has the scaling �−1/3 with the shear.
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